การทำงานของ MRI ของ การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก

เครื่องสแกนของ MRI ทางการแพทย์

เพื่อดำเนินการศึกษา ผู้ป่วยจะอยู่ในตำแหน่งภายในเครื่องสแกน MRI ซึ่งมีสนามแม่เหล็กที่เข้มข้นสูงรอบๆบริเวณที่จะถ่ายภาพ. การประยุกต์ทางการแพทย์ส่วนใหญ่พึ่งพาการตรวจจับสัญญาณคลื่นความถี่วิทยุที่ปล่อยออกมาจากอะตอมไฮโดรเจนที่ถูกกระตุ้นในร่างกาย (ปรากฏในเนื้อเยื่อใดๆที่มีโมเลกุลของน้ำ) โดยใช้พลังงานจากสนามแม่เหล็กที่สั่นที่ความถี่ที่เหมาะสม. การวางแนวของภาพจะถูกควบคุมโดยการเปลี่ยนแปลงสนามแม่เหล็กหลักโดยใช้ขดลวดที่มีจำนวนขดที่ลดลั่นกันไป. เมื่อขดลวดเหล่านี้เปิดและปิดอย่างรวดเร็ว, พวกมันสร้างเสียงการสแกน MRI ที่มีลักษณะซ้ำๆ. การตัดกันระหว่างเนื้อเยื่อที่แตกต่างกันจะถูกกำหนดโดยอัตราของอะตอมที่ถูกกระตุ้นกลับไปสู่สถานะที่สมดุล. สารบังคลื่นแม่เหล็กอาจถูกฉีดเข้าเส้นเลือดดำ, หรือให้ทางปาก, หรือฉีดเข้าทางข้อต่อ[22].

MRI ต้องการสนามแม่เหล็กที่มีทั้งความแข็งแกร่งและสม่ำเสมอ. ความเข้มของสนามแม่เหล็กถูกวัดเป็นค่าเทสลา - และในขณะที่ส่วนใหญ่ของระบบทำงานที่ 1.5T, ระบบที่ใช้ทางการค้าจะใช้ระหว่าง 0.2T-7T. แม่เหล็กในคลินิกส่วนใหญ่เป็นแบบตัวนำยิ่งยวดที่ต้องใช้ฮีเลียมเหลว. สนามแม่เหล็กที่มีความเข้มต่ำกว่าสามารถทำได้ด้วยแม่เหล็กถาวร, ซึ่งมักจะถูกใช้ในการสแกน MRI แบบ"เปิด"สำหรับผู้ป่วยที่อึดอัดในที่แคบ[23].

ประวัติของเครื่อง MRI[24]ในปี 1971 บลอช (Bloch) และ พัลเซล (Purcell) ได้รับรางวัลโนเบลสาขาฟิสิกส์ร่วมกันในการพัฒนาในเรื่องการ เรโซแนสของนิวเคลียสด้วยแม่เหล็ก NMR (Nuclear magnetic resonance) โดย NMR เป็นหลักการทางฟิสิกส์ที่อยู่เบื้องหลัง MRI ซึ่งแมนส์ฟิล (Mansfield) และลัวเตอร์เบอร์ (Lauterbur) ได้พัฒนาเครื่อง NMR จนสามารถสร้างภาพร่างกายมนุษย์จากสัญญาณที่ได้จาก NMR ได้ ทำให้ทั้ง ลัวเตอร์เบอร์ และ แมนส์ฟิลได้รับรางวัลโนเบลสาขา การแพทย์ในปี 2003MRI ชื่อเดิมคือ การสร้างภาพจากการเรโซแนสของนิวเคลียสด้วยแม่เหล็ก (Nuclear Magnetic Resonance Imaging) แต่ต้องมาเปลี่ยนชื่อมาเป็น Magnetic Resonance Imaging (MRI) เนื่องจากเกรงว่าคนทั่วไปจะเข้าใจผิดว่าใช้รังสี ซึ่งในความเป็นจริงมิได้เป็นเช่นนั้น เครื่อง MRI ถูกนำมาใช้ในทางการแพทย์อย่างแพร่หลายและรวดเร็วมาก

หลักการทำงานและส่วนประกอบของเครื่อง MRI[25]MRI คือเครื่องตรวจร่างกายด้วยการสร้างภาพเหมือนจริงของส่วนต่างๆของร่างกาย โดยใช้สนามแม่เหล็กความเข้มสูง เมื่อใส่สนามแม่เหล็กให้กับร่างกาย นิวเคลียสของอะตอมในร่างกายจะเข้าสู่สถานะถูกกระตุ้น และเมื่อหยุดให้สนามแม่เหล็ก นิวเคลียสของอะตอมจะเกิดการปลดปล่อยพลังงานเพื่อกลับคืนสู่สถานะปกติ เมื่อรับคลื่นความถี่ที่ปล่อยออกมา แล้วนำไปประมวลผลและสร้างเป็นภาพด้วยคอมพิวเตอร์ ซึ่งสามารถให้รายละเอียดและความคมชัดเหมือนการตัดร่างกายออกเป็นแผ่นๆทำให้แพทย์สามารถมองจุดที่ผิดปกติในร่างกายคนเราได้อย่างละเอียด โดยที่ไม่ก่อให้เกิดอันตรายใดๆต่อผู้รับการตรวจเครื่อง MRI มีส่วนประกอบที่สำคัญคือ แม่เหล็กที่มีกำลังสูงมากซึ่งใช้ในการเปลี่ยนการเอียงตัวของสปินของนิวเคลียสให้มีการเอียงตัวตามทิศของสนามแม่เหล็กที่ให้ แล้วหลังจากนั้นก็หยุดให้สนามแม่เหล็กเพื่อให้นิวเคลียสเกิดการคายพลังงานเพื่อกลับสู่ตำแหน่งเดิม จับสัญญาณการคายพลังงานที่ได้ แล้วนำมาสังเคราะห์ภาพก็จะได้ภาพต่างๆในบริเวณที่ทำการศึกษา ดังนั้นสนามแม่เหล็กที่ใช้จึงจะต้องมีความเข้มสูงมากและต้องใช้เวลาสั้นมากๆเพื่อให้มีผลกระทบต่อการวัดน้อยที่สุดในระยะแรกได้ใช้การสร้างแม่เหล็กไฟฟ้า โดยใช้เส้นลวดทองแดงพันเป็นขดลวดมีน้ำหนักประมาณ 5 ตัน ได้สนามแม่เหล็กที่มีความเข้มไม่มากนักคือ ประมาณ 0.2 ถึง 1.0 เทสลา ต่อมาจึงมีการพัฒนาแม่เหล็กเป็นแบบ แม่เหล็กความเข้มสูง (Super magnet) โดยใช้ขดลวดซึ่งทำด้วยตัวนำยวดยิ่งแทน ให้แม่เหล็กที่มีความเข้มได้มากกว่า 2 เทสลา โดยมีขนาดขนาดแม่เหล็กไม่ใหญ่มากนัก โดยในระยะแรกจะใช้ตัวนำยวดยิ่งแบบดั้งเดิมในพวกสารประกอบคือโลหะผสมไนโอเบียมไททาเนียม(NbTi) ที่มีอุณหภูมิวิกฤติไม่สูงมากนักประมาณ 10 เคลวิน การทำงานต้องใช้ฮีเลียมเหลว และไนโตรเจนเหลวในการควบคุมอุณหภูมิ ปัจจุบันมีการนำเอาตัวนำยวดยิ่งอุณหภูมิสูงมาใช้ทำแม่เหล็กความเข้มสูงแทนตัวนำยวดยิ่งแบบดั้งเดิม ทำให้สามารถใช้งานได้สะดวกมากยิ่งขึ้น เนื่องจากตัวนำยวดยิ่งประเภทนี้มีอุณหภูมิวิกฤติประมาณ 90 เคลวิน สามารถใช้ไนโตรเจนเหลวเป็นสารหล่อเย็นได้ สามารถให้สนามแม่เหล็กได้สูงมากตั้งแต่ 2 เทสลา จนถึตัวอักษรหัวเรื่อง 10เทสลา ได้อย่างสบายๆ ทั้งนี้ขึ้นกับกระแสไฟฟ้าวิกฤตและสนามไฟฟ้าวิกฤตของตัวนำยวดยิ่ง

การแตกต่างของแสงในภาพจาก MRI

ความต่างสีของภาพอาจต้องถ่วงน้ำหนักเพื่อแสดงให้เห็นถึงโครงสร้างทางกายวิภาคหรือโรคที่แตกต่างกัน. แต่ละเนื้อเยื่อกลับสู่สภาพสมดุลหลังจากการกระตุ้นโดยกระบวนการที่เป็นอิสระของเวลาผ่อนคลายแบบ T1 (Spin–lattice) และ T2 (Spin-spin).

ผลกระทบของ TR และ TE บนสัญญาณ MRตัวอย่างของการสแกน MRI แบบ T1 weighted, T2 weighted และ PD weighted

เพื่อสร้างภาพแบบถ่วงน้ำหนัก T1, เราต้องรอให้จำนวนที่แตกต่างกันของการเป็นแม่เหล็กที่จะฟื้นตัวก่อนการวัดสัญญาณ MR โดยการเปลี่ยน'เวลาการทำซ้ำ' (อังกฤษ: repetition time (TR)). การให้น้ำหนักภาพแบบนี้จะเป็นประโยชน์สำหรับการประเมินเปลือกสมอง, การระบุเนื้อเยื่อไขมัน, และการกำหนดลักษณะจุดโฟกัสของโรคตับและสำหรับการถ่ายภาพหลังการจัดแบ่งสี (อังกฤษ: post-contrast imaging).

บทความหลัก: เวลาผ่อนคลายแบบ Spin-spin

เพื่อสร้างภาพแบบถ่วงน้ำหนัก T2, เราต้องรอให้จำนวนที่แตกต่างกันของการเป็นแม่เหล็กที่จะสลายตัวก่อนที่จะวัดสัญญาณ MR โดยการเปลี่ยน'เวลาสะท้อน' (อังกฤษ: echo time (TE))" การให้น้ำหนักภาพนี้จะเป็นประโยชน์สำหรับการตรวจหาอาการบวมน้ำ, การเผยให้เห็นแผลสารสีขาว (อังกฤษ: white matter lesions) และและการประเมินลักษณะทางกายวิภาคเป็นวงในต่อมลูกหมากและมดลูก.

ใกล้เคียง

การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก การสร้างภาพประสาท การสร้างภาพโดยกิจด้วยเรโซแนนท์แม่เหล็ก การสร้างสรรค์ การสร้างเม็ดเลือดแดง การสร้างอาดัม (มีเกลันเจโล) การสรรหาสมาชิกวุฒิสภาไทย พ.ศ. 2551 การสรรหาสมาชิกวุฒิสภาไทย พ.ศ. 2554 การสร้างภาพทางการแพทย์ การสร้างกลูโคส

แหล่งที่มา

WikiPedia: การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก http://webstore.iec.ch/Webstore/webstore.nsf/0/EC1... http://icd9cm.chrisendres.com/index.php?srchtype=p... http://www.eradimaging.com/site/article.cfm?ID=426 http://www.falckproductions.com/resources/mri-safe... http://www.gehealthcare.com/usen/mr/docs/SPV8_Avoi... http://www.goingfora.com/radiology/mri.html http://www.howequipmentworks.com/physics/medical_i... http://www.ibji.com/images/lyftenbloggie/poster_go... http://journals.lww.com/neuroreport/Abstract/2006/... http://www.mdpi.com/1660-4601/6/6/1778/pdf